RESEARCH ARTICLE
Changes in Cortical Activity During Real and Imagined Movements: an ERP Study
Sergio Machado*, 1, 4, 7, 8, Oscar Arias-Carrión5, Flávia Paes1, Pedro Ribeiro2, 3, Mauricio Cagy6, Roberto Piedade2, Leonardo Ferreira Almada8, Renato Anghinah9, Luis Basile10, Maria Francesca Moro11, Marco Orsini12, 13, Julio Guilherme Silva13, Adriana Cardoso Silva1, Antonio E. Nardi1 1
Article Information
Identifiers and Pagination:
Year: 2013Volume: 9
First Page: 196
Last Page: 201
Publisher ID: CPEMH-9-196
DOI: 10.2174/1745017901309010196
Article History:
Received Date: 3/9/2013Revision Received Date: 8/10/2013
Acceptance Date: 9/10/2013
Electronic publication date: 15/11/2013
Collection year: 2013

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.
Abstract
This study aims to compare the topographic distribution of cortical activation between real and imagined movement through event-related potential (ERP). We are specifically interested in identifying, the topographic distribution of activated areas, the intensity of activated areas, and the temporal occurrence of these activations on preparation and motor response phases. Twelve healthy and right handed subjects were instructed to perform a task under real and imagery conditions. The task was performed simultaneously to electroencephalographic (EEG) recording. When compared the conditions, we found a statistically significant difference in favor of real condition revealed by performing an unpaired t-test with multiple corrections of Bonferroni, demonstrating negative activity on electrode C3 and positive activity on the electrode C4 only in motor response phase. These findings revealed similar functional connections established during real and imagery conditions, suggesting that there are common neural substrate and similar properties of functional integration shared by conditions.