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Abstract: Background: The impact of physical activity on brain metabolic functions has been investigated in different 

studies and there is growing evidence that exercise can be used as a preventive and rehabilitative intervention in the treat-

ment of depressive disorders. However, the exact neuronal mechanisms underlying the latter phenomenon have not been 

clearly elucidated. The present article summarises key results derived from studies that focussed on the neurobiological 

impact of exercise on brain metabolic functions associated with depressive disorders. Since major depressive disorder 

(MDD) is a life threatening disease it is of great significance to find reliable strategies to prevent or to cure this illness. 

Therefore, the aim of this paper is to review (1) the physiological relationship between physical activity and depressive 

disorders and (2) the potential neurobiological alterations induced by exercise that might lead to the relief of mental disor-

ders like depression.  

Methods: We searched electronic databases for literature concerning the relationship between exercise and depression 

from 1963 until 2009.  

Results: The data suggests an association between physical inactivity and higher levels of depressive symptoms. Properly 

designed studies could show that exercise training can be as effective as antidepressive medications. 

Conclusion: The exact mechanisms how exercise affects the brain are not fully understood and the literature lacks of well 

designed studies concerning the effects of exercise training on depressive disorders. But the observed antidepressant ac-

tions of exercise are strong enough that it already can be used as an alternative to current medications in the treatment of 

depressive disorders. 
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1. INTRODUCTION  

The fact that exercise and physical activity have positive 
effects on health is well known. Most of the research on ex-
ercise-induced changes carried out during the past years has 
mainly focussed on its impact on cardiovascular and muscu-
loskeletal diseases [1]. Only recently it has been noted, that 
exercise also leads to neural alterations that increase brain 
function and mental health [2]. Neurobiological functioning  
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in the human brain seems to depend upon an active or non-
active lifestyle. Neuronal alterations can be induced lifelong 
[3] but already in the fetal state movements of the unborn 
child and the mother can induce growth, development and 
networking of nerve cells [4]. Therefore physical activity 
seems to be an important stimulus for neural adaptations of 
the brain in all age groups. The main effects of exercise on 
brain function are found in an altered blood flow [5] (which 
might explain the lower risk of cerebrovascular diseases in 
an active population), reduced risk of neurodegenerative and 
age-related cognitive deficits [3, 6, 7] as well as improved 
learning and memory functions [2]. Many studies show 
benefits due to exercise such as reduced age-related neuronal 
loss [8] and an increase in cell proliferation and neurogene-
sis, the process by which new neurons are generated [9]. In 
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addition, recent studies have shown that exercise produces 
antidepressant responses in rodent models [10] and moode-
levating actions in humans [11, 12]. The antidepressants ef-
fects of exercise are of special interest, since major depres-
sive disorder is a life threatening disease accompanied by a 
high risk of suicide and is a major cause of morbidity 
worldwide [13-15]. Therefore, the aim of this paper is to 
review the relationship between physical activity and depres-
sive disorders and the potential neurobiological alterations 
induced by exercise that might lead to the relief of mental 
disorders like depression. To do so, we searched electronic 
databases for literature and reviewed articles concerning the 
latter phenomenon from 1963 until 2009. 

1.1. Epidemological Data of Depression 

Since MDD is a major health problem and the effective-
ness of current medical antidepressants is only about 65% 
[16], the antidepressant actions of exercise are of immense 
interest. According to the Global Burden of Disease study 
[17] mild to moderate major depressive disorder (MDD) 
ranks now second behind ischemic heart disease for years of 
life lost due to early death or disability. MDD is the most 
prevalent of all psychiatric disorders, affecting up to 25% of 
women and 12% of men during their lifetimes [18]. Accord-
ing to Greden et al. 340 million people worldwide are af-
fected by depression [19]. The pan-European study DEPRES 
[20] showed in 1997 that 13359 out of 78463 adults who 
participated in screening interviews across six countries in 
Europe suffered from depression. This represents a preva-
lence of 17% for Western Europe. The resulting economic 
burden is about $83.1 billion per year only in the USA [21].  

The main symptoms of MDD are depressed mood, anhe-
donia (lost of interest or pleasure), increased tiredness, irrita-
bility, difficulties in concentrating, abnormalities in appetite 
and sleep and suicidal intentions [22]. Depressive symptoms 
are correlated with the presence of chronic disease [23], in-
ability to work [24], increased mortality risk [25], increased 
use of medical services [26], decreased well being and low-
ered functioning [27]. Ten percent of those diagnosed with 
MDD commit suicide [28, 29], depressed patients tend to 
develop coronary artery disease and type 2 diabetes [30]. 
Today’s treatments as mentioned above remain sub-optimal. 
Only 50% of all patients show complete remission, although 
up to 80% demonstrate partial responses [22]. Furthermore, 
the medications require long-term treatment for weeks to 
months before a therapeutic response is achieved [16]. 
Therefore, there is an enormous demand for more effective 
methods to treat depressive disorders. 

Although the prevalence of depression and its impact is 
high, knowledge about the pathophysiology of MDD is still 
not completely understood. That is primarily due to difficul-
ties in observing pathological changes within the human 
brain and that most depressions occur idiopathically [31]. 
The risk factors of depression are diverse like stressful life 
events, endocrine abnormalities (hypothyroidism and hyper-
cortisolism), cancers and side effects of drugs [22, 32, 33]. 
The diagnosis of MDD bases on symptomatic criteria set 
forth in the Diagnostic and Statistical Manual [34]. It be-
comes clear from the criteria’s that the diagnosis of depres-
sion is not based on objective diagnostic tests, but rather on a 
set of symptoms. Therefore depression cannot be seen as a 

single disease. It is a syndrome that consists of numerous 
diseases of different causes and pathophysiologies that 
makes the diagnosis of MDD subjective and is based on the 
documentation of certain symptoms over a time of at least 
two weeks [22]. The diagnostic criterias overlap with other 
conditions such as anxiety disorders, which have substantial 
co-morbidity with depression [35, 36]. 

1.2. Causes of Depression 

Epidemiological studies show that 40%–50% of the risk 
to suffer from depression is genetic [37, 38]. This makes 
depression a highly hereditary disorder. Despite some prom-
ising leads, there are still no confirmed genetic findings for 
mood disorders [39]. 

Nongenetic factors are as diverse as stress and emotional 
trauma, viral infections, and even stochastic processes during 
brain development have been implicated in the etiology of 
depression [38, 40].  

Depressive syndromes occur in the context of innumer-
able medical conditions like endocrine disturbances (hyper- 
or hypocortisolemia, hyper- or hypothyroidism), collagen 
vascular diseases, Parkinson’s disease, traumatic head inju-
ries, certain cancers, asthma, diabetes and stroke. Several 
brain regions and circuits that regulate emotion, reward and 
executive functions are implicated in this disease. Dysfunc-
tional changes within the interconnected limbic region have 
been implicated in depression and also in antidepressant ac-
tion [41]. A large body of post-mortem and neuroimaging 
studies of depressed patients have reported reductions in 
grey-matter volume, glial density in the prefrontal cortex and 
the hippocampus. These regions are thought to mediate the 
cognitive aspects of depression, such as feelings of worth-
lessness and guilt [33, 42, 43]. Patients with depression have 
shown to suffer from statistically significant smaller left hip-
pocampal volume than non-depressive comparison subjects 
[44]. In this study Magnetic Resonance Imaging (MRI) was 
used to measure the volume of the hippocampi in 16 patients 
with major depression (10 men, 6 women) and 16 case-
matched non-depressed controls. Patients with a history of 
Post-traumatic Stress Disorder or current medication use 
other than antidepressant were excluded from this investiga-
tion. The findings of this study showed that the right hemi-
sphere suffered from a reduction of hippocampal volume by 
12% but without statistical significance. The left hemisphere 
showed a significant reduction in volume of the hippocam-
pus by 19% in the depressed patients compared to the 
matched controls. These results suggest that depression 
causes loss of brain volume observed in the hippocampi, 
especially in the left hemisphere. 

1.3. Physical Activity and Depression 

Data from epidemiological studies suggests an associa-
tion between physical inactivity and higher levels of depres-
sive symptoms [45, 46]. It has been shown that reduced 
physical activity leads to increased symptoms of depression 
in older adults [47] and that depressive symptoms decrease 
when physical activity is resumed [48]. Blumenthal et al. 
(1999) could show that the influence of a 16-week exercise 
training program as a therapeutic treatment of depressive 
patients is as effective as antidepressive medications. 156 
men and women with diagnosed MDD (� 50 years) were 
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randomly assigned into three groups of interest: (1) aerobic 
exercise, (2) antidepressants (sertraline hydrochloride) and 
(3) combined exercise and medication group. The subjects 
attended three supervised exercise sessions per week for 16 
consecutive weeks at an intensity of 70% to 85% of heart 
rate reserve that was calculated from the maximum heart 
rate. The maximum heart rate was achieved during a tread-
mill test every participant had to fulfil in advance. Each 
aerobic exercise session began with 10-minutes warm-up 
exercise, followed by 30 minutes of continuos walking or 
jogging at the described intensity. The end of the session was 
characterised by a 5 minutes cool-down. The heart rate was 
monitored and recorded 3 times per session by a trained ex-
ercise physiologist via radial pulses. The study could show 
that 16 weeks of treatment exercise was equally effective in 
reducing depression among patients with MDD as antide-
pressants [48]. Several meta-analyses [49-54] studied the 
impact of exercise on depression and all concluded that exer-
cise had positive effects. Two studies concluded that more 
intense exercise led to larger improvements in mood [55, 
56]. There is evidence that physical activity induces physio-
logical changes in endorphine and monoamine levels, and 
also reduces the levels of the stress hormone cortisol [57]. 
Recent studies suggested that exercise stimulates the growth 
of new nerve cells [9] and induces the release of proteins and 
peptides, which are known to improve health and survival of 
nerve cells, such as brain-derived neurotrophic factor 
(BDNF), vascular endothelial growth factor (VEGF), insu-
lin-like growth factor (IGF-1) and the gene VGF (nerve 
growth factor inducible) [58-62]. 

Even though the effectiveness of exercise in decreasing 
symptoms of depression has been well established, Mead et 
al. concluded in 2009, after reviewing articles concerning the 
influence of exercise on depressive symptoms, that the effect 
of exercise was not significant [63]. LePore infered that ex-
ercise may only be a diversion from negative thoughts [64] 
and social contacts might influence the positive outcome. 
Especially the determination regarding the optimum type, 
frequency and duration of exercise is questioned by Mead et 
al., 2008. He points out that future research has to consider 
the design of exercise to determine more specifically what 
kind of exercise is of benefit and what not, e.g. whether ex-
ercise should be performed supervised or unsupervised, in-
doors or outdoors, or in a group or alone [63].  

1.4. The Specific Role of Monoamines in Depression 

The ‘monoamine hypothesis’ of depression, which postu-
lates that depression is caused by decreased monoamine 
function, especially serotonin (5-hydroxytryptamine 5-HT) 
and norepinephrine (NE) in the brain, originated from early 
clinical observations [41, 65]. Today’s antidepressant and 
anxiolytic drugs such as Tricyclic antidepressants (TCAs), 
Monoamine oxidase inhibitors (MAOIs), Serotonin-
norepinephrine reuptake inhibitors (SNRIs) and Selective 
serotonin reuptake inhibitors (SSRIs) are still designed to 
increase monoamine transmission acutely [66]. They primar-
ily affect the serotonergic and/or the norepinephrine system, 
whether by inhibiting the reuptake of serotonin and/or nore-
pinephrine into the presynapse or by inhibiting the activity of 
monoamine oxidase, thus preventing the breakdown of 
monoamine neurotransmitters and thereby increasing the 
availability of serotonin and/or norepinephrine in the synap-

tic cleft [67, 68]. Although these monoamine-based agents 
are potent antidepressants [66], the cause of depression is far 
from being due to a simple deficiency of central mono-
amines. The problem is that the MAOIs and SSRIs produce 
immediate increases in monoamine transmission, whereas 
their mood-enhancing properties require weeks of treatment. 
Because of this delay in time it is thought that the acute in-
creases in the amount of synaptic monoamines induced by 
antidepressants produce secondary neuroplastic changes that 
occur over a longer timescale and involve transcriptional and 
translational changes that mediate molecular and cellular 
plasticity [22, 65]. Nevertheless monoamine-based antide-
pressants remain the first line of therapy for depression, but 
their long therapeutic delays in time and low remission rates 
(about 30%) [66] have encouraged the search for more effec-
tive agents [41, 69].  

One of the mechanisms through which exercise produces 
the antidepressant effects might be similar to that of the anti-
depressant drug treatment since exercise also affects the cen-
tral serotonergic system. The synthesis of brain 5-HT de-
pends on two main variables, the neuronal concentration of 
its precursor, tryptophan (Trp), and the activity of its rate-
limiting enzyme, tryptophan hydroxylase (TPH; converts 
tryptophan into 5-hydroxytryptophan) [70]. Acute physical 
exercise increases blood free tryptophan and decreases al-
bumin bound tryptophan both in animals [71-73] and hu-
mans [74-76] by increasing the rate of lipolysis. It was 
shown in humans that an increase in levels of the serotonin 
metabolite, 5-hydroxyindoleacetic acid follows physical ex-
ercise [77]. Since Trp is competing with other amino acids 
like valine, leucine and isoleucine to enter the brain, it has 
also been demonstrated that exercise decreases the levels of 
these amino acids leading to higher availability of the sero-
tonin precursor Trp in the brain [78-80]. Therefore the higher 
concentrations of Trp in blood plasma and also in the cere-
brospinal fluid following exercise enhance the serotonin neu-
rotransmission in the brain. 

Other experiments with animals have demonstrated an 
immediate increase in the activity of brain cells that produce 
norepinephrine after acute exercise [81-83]. Since Serotonin-
norepinephrine reuptake inhibitors is a common choice of 
treatment that acts antidepressive by inhibiting the reuptake 
norepinephrine into the presynapse and thereby increasing 
the availability of norepinephrine in the synaptic cleft [67, 
68], it is noteworthy that the same effects can be achieved by 
exercise. Increased levels of norepinephrine and its metabo-
lites as well as the activation of tyrosine hydroxylase, an 
enzyme that is involved in the production of norepinephrine 
is also observed after acute [81-83] and chronic exercise in 
animals [84-86]. Therefore it can be presumed that excercise 
produces the same mood-elevating effects as antidepressants 
by altering the availability of norepinephrine. 

Although not as consistent yet nevertheless notable is the 
effect of exercise on the levels of dopamine as an antidepres-
sant factor. It has been demonstrated that dopamine activity 
is increased following exercise [77, 87]. Dopamine seems to 
play an important role in patients with Parkinson’s disease 
but has also been described to correlate to motivational prob-
lems and anhedonia seen in patients affected by MDD [88]. 
The release of dopamine is observed as a consequence of 
activating the reward system [89]. A common feature of ad-
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dictive drugs is that they alter the levels of dopamine in the 
nucleus accumbens. Exercise is a rewarding behaviour that 
shares many features with those of addictive drugs. It has 
been observed in rodents that running increases levels of 
dopamine in the nucleus accumbens and that those animals 
can be trained to lever press for access to running wheels to 
get their reward [90]. Similar behaviour can be observed in 
humans that train excessively which can result in fatigue and 
mood disturbances as been reported in overstrained humans 
[91]. Therefore dopamine seems to be of certain relevance 
why exercise can be addictive and reinforcing, and also why 
it has its antidepressant effect on humans. 

However, as mentioned previously, the monoamine hy-
pothesis of depression remains inadequate. As in the case of 
antidepressants exercise induces higher concentrations of 
serotonin and/or norepinephrine but this cannot explain the 
observed mood-elevating delay in time [66]. Therefore neu-
roplastic changes that involve transcriptional and transla-
tional changes would appear to play a critical role in the 
treatment of MDD (see chapter: “1.6 Neurotrophic Factors 
and Neurogenesis”). 

1.5. The Role of the Hypothalamic–Pituitary–Adrenal 
Axis in Depression 

Depression is often described as a stress-related disorder, 
and there is evidence that episodes of depression occur in the 
context of some form of stress. Even though, stress per se is 
not sufficient to cause depression but early clinical studies 
identifying reproducible but small increases in serum gluco-
corticoid concentrations in depression [92, 93] led to a sig-
nificant interest in the role of a dysfunctional hypothalamic–
pituitary–adrenal axis (HPA) in the pathophysiology of de-
pression. Physical [94] or psychological stress [95] increases 
serum glucocorticoid concentrations, and some depression-
like symptoms can be produced in rodents by chronic ad-
ministration of glucocorticoids [96]. High levels of glucocor-
ticoids can reduce hippocampal subgranular zone (SGZ) 
proliferation rates and produce atrophic changes in hippo-
campal subregions [97]. This could contribute to the hippo-
campal volume reductions seen in depression [45]. Patients 
with Cushing’s syndrome, who have extremely high concen-
trations of circulating cortisol, also show depressive features 
and atrophic changes in the hippocampus [22, 97]. Several 
metabolic abnormalities that are often associated with de-
pression, such as insulin resistance and abdominal obesity, 
can be at least partly explained by an increase in glucocorti-
coids [32, 98]. Hypercortisolaemia in depression is mani-
fested at several levels, including impaired glucocorticoid-
receptor-mediated negative feedback [98], adrenal hyper-
responsiveness to circulating adrenocorticotropic hormone 
(ACTH) [92] and hypersecretion of corticotrophin-releasing 
factor (CRF) [99], the hypothalamic activator of ACTH re-
lease from the pituitary [98].  

Chronic antidepressant administration has shown to in-
crease the concentration of corticosteroid receptors, which 
can restore HPA negative feedback and normalize cortisol 
levels and HPA function [100]. Therefore it appears that 
there is an interrelationship between stress, high glucocorti-
coid levels and depression. But not only antidepressants, also 
exercise can induce changes on the functioning of the HPA 
axis. Although acute high intensity physical activity leads to 

increased levels of stress hormones corticotropin and corti-
sol, long-term exercise (meaning that the body adapts to 
training stimuli) attenuates the human stress response [101-
103]. Exercise can be a stressful stimulus itself depending on 
the intensity and duration of the activity [94] so that stressful 
stimulations like exercise need to be followed by adaptations 
of the organism. If the organism becomes adapted to exer-
cise, then the subsequent response of catecholamine release 
to stressful intensities of exercise is less than that observed in 
nontrained subjects [104]. After a training program under-
taken at moderate intensities for 4 weeks, the organism al-
ready reacts with lower concentrations of ACTH and cortisol 
to exercise [104, 105]. Furthermore, the effects of exercise in 
trained subjects indicate that after ending the exercise, the 
concentrations of cortisol reach their basic levels faster than 
in untrained subjects [106].  

Whether these effects of lower reactivity to stressful ex-
ercise events can be related to stressful events in daily life 
remains unclear. A meta analysis of Crew and Landers [107] 
including 34 studies, 92 effect strengths (ES), N=1.449 dem-
onstrated a correlation between the level of fitness and reac-
tivity to stressful events (ES=.48). This study demonstrated 
that trained subjects do not react as strongly to stress as un-
trained subjects exposed to stress. The problem with the lat-
ter study was the measured outcome of stress e.g. cardiovas-
cular parameters. In nearly all stress-exercise-related situa-
tions, untrained individuals react with higher heart frequen-
cies but data regarding physiological parameters such as 
noradrenaline, adrenaline or ACTH levels are generally 
missing [104]. In many reviews and meta analyses [108-110] 
that have investigated the correlation between the level of 
fitness (by maximal and submaximal exercise tests) and 
stressors it was shown that trained subjects exhibit a higher 
reactivity to stress (ES=.08, p<.001) and recover faster from 
stress too (37 studies, 118 ES, N=1.092). Most effects were 
demonstrated in heart frequency, blood pressure, blood flow 
and vascular resistance. The resulting effects on adrenaline, 
noradrenaline, ACTH and cortisol were diverse. Animal 
studies have indicated that animals that exercised voluntarily 
show improved stress-coping abilities in physically demand-
ing and psychological challenges. The latter improved stress-
coping abilities appeared as adaptive responses of the HPA 
axis [110-112], improvements in sleep quality and increased 
stress resistance of sleep/EEG profiles [113], and also re-
duced anxiety-related behaviour in voluntary exercised mice 
and rats compared to sedentary control animals [114]. 

1.6. Neurotrophic Factors and Neurogenesis 

Decreases in volume observed in the hippocampi and 
other regions of the forebrain in depressed patients have sup-
ported a hypothesis for depression involving decrements in 
neurotrophic factors [115, 116]. Most studies have focused 
on BDNF, which is expressed in limbic structures. Neurotro-
phic factors are known to regulate neural growth and differ-
entiation during development and are also regulators of plas-
ticity and survival of adult neurons and glia [22]. Support for 
the ‘BDNF hypothesis of depression’ has come from a large 
preclinical literature showing that stress can reduce BDNF-
mediated signalling in the hippocampus, whereas chronic 
treatment with antidepressants increases BDNF-mediated 
signalling [115]. Similar changes have been observed in the 
post-mortem hippocampus [117], as well as in serum BDNF-
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concentrations of humans with depression [115]. The second 
support for the theory that neurotrophic factors are of impor-
tance in treating depression is based upon the time delay of 
the mood-elevating effects of antidepressants, which is only 
seen after prolonged administration (several weeks to 
months). The cellular effect of antidepressants is the induc-
tion of hippocampal neurogenesis - the process by which 
neural progenitors of the SGZ divide mitotically to form new 
neurons that differentiate and integrate into the dentate gyrus 
[65, 118]. This process goes along with the mood-elevating 
time delay in patients. Blockade of hippocampal neurogene-
sis inhibits the therapeutic-like effects of most antidepressant 
treatments in rodent models [118]. Moreover, antidepressant 
treatment, possibly through the actions of transcription factor 
“cAMP response element binding protein” (CREB) or other 
transcriptional regulators [15, 65], increases the amounts of 
several growth factors in the hippocampus that influence 
neurogenesis. These include BDNF as well as VEGF and the 
recently discovered neuropeptide VGF, which themselves 
have antidepressant and pro-neurogenic properties in rodents 
[119-121]. Furthermore, both central and systemic admini-
stration of IGF-1 increases hippocampal cell proliferation 
and neurogenesis in the adult rat [122, 123]. The same ef-
fects are seen after administration of clinically effective anti-
depressant drugs. Central administration of IGF-1 has shown 
to produce antidepressant-like effects in the rat forced swim 
test [124]. This data supports the ‘neurotrophic hypothesis of 
depression’, which means that neuronal adaptations induced 
by antidepressant drugs are necessary to produce mood-
elevation effects. This supports the theory that neurotrophic 
factors play a key role in the relief of depressive symptoms. 

Like antidepressants, exercise can also increase the syn-
thesis of new neurons in the adult brain and therefore induce 

mood-elevating effects. Van Praag et al. (1999) observed an 
increase in hippocampal neurogenesis in rats with regular 

access to a running wheel [9]. Recent studies demonstrated 
that adult neurogenesis can be influenced by stress [125], 

ageing [126], environmental enrichment [127, 128] and 
physical activity [9, 129]. 

Kempermann et al. in 1997 showed the positive effects 
of environmental enrichment on neurogenesis in mice [127]. 

These mice were also tested in a spatial memory task, the 
Morris water maze [62], in which the enriched animals 

learned faster than control animals suggesting the possibility 
that the new neurons cause enhanced cognition [127]. Ex-

periments comparing animals undergoing exercise (wheel 
running) and animals raised in an enriched environment 

without exercise showed more Bromodeoxyuridine (BrdU; a 
synthetic nucleoside, used in the detection of proliferating 

cells)-positive cells in the runners group than in the group 
that was exposed to enriched environment without exercise 

[130]. Further investigations demonstrated that already 10 
days of wheel running increases cell genesis in rodents [131-

133]. The increase of hippocampal neurogenesis by running 
became strongly manifested [134-139] that is also associated 

with improved hippocampal synaptic plasticity [140]. 

The mechanisms by which exercise induces neurogenesis 

is based on the increase of following molecules: BDNF, 
VEGF, IGF-1, the neuropeptide VGF, 5-HT and �-endorphins 

[119, 134, 141].  

As already mentioned several days of voluntary wheel 
running enhance the levels of BDNF mRNA in the hippo-
campus as has been shown in several studies [141-147]. The 

changes in the mRNA were found in neurons of the dentate 
gyrus (DG), the hilus and the CA3 region of the hippocam-
pus. In addition to the hippocampus, exercise also aug-
mented levels of BDNF mRNA in the lumbar spinal cord 
[148], the cerebellum and the cortex [143]. Other growth 
factors like nerve growth factor (NGF) [143] and fibroblast 
growth factor 2 (FGF-2) were also altered by exercise [149].  

It is well known that �-endorphins are increased after ex-
ercise [150, 151]. It has been shown that the infusion of opi-
ates induces an increase in cell proliferation and also that 
antagonists of the opiate receptor decrease cell proliferation 
in the dentate gyrus [152, 153].  

Infusion of recombinant protein in mammals to elevate 
the levels of VEGF, a protein secreted from blood that acts 
on endothelial cells to stimulate the formation of bloodves-
sels, has been shown to increase cell proliferation in the adult 

hippocampus and ventricular zone [154]. It was demon-
strated that the levels of VEGF are also elevated following 
exercise [61, 155]. Fabel et al. pointed out in 2003 that 
VEGF is necessary for the effects of running on adult hippo-
campal neurogenesis whereas peripheral blockade of VEGF 
neutralizes running-induced neurogenesis [135]. 

Another growth factor that is up-regulated in the brain 
[156] and in the periphery [60] after exercise is the insulin-
like growth factor IGF-1. IGF-1, structurally related to pro-
insulin, plays an important role in depressive disorders by 
contributing to neural development through neurogenesis 
and synaptogenesis, facilitating oligodendrocyte survival and 
stimulating myelination [157-159]. IGF-1 promotes cell pro-
liferation and inhibits cell death during healthy but also dur-

ing stressed or diseased states [160]. Peripheral administra-
tion of IGF-1 has been shown to induce up-regulation of 
BDNF mRNA levels in the brain [156]. Therefore it is sug-
gested that IGF-1 initiates growth factor cascades in the 
brain that can alter mechanisms of plasticity [57]. Further-
more, Carro et al. could show in three experiments that exer-
cise has neuroprotective effects by its increased passage of 
circulating IGF-1 into the brain [156] since after blocking the 
passage exercise no longer worked neuroprotective in simu-
lated brain insults in rodents. Further evidence comes from 
Fernandez et al. who could show that systemic administra-
tion of IGF-1 to brain-damaged sedentary mice or rats is 

sufficient to elicit functional recovery after simulated brain 
insult in rodents [161]. Based on these findings circulating 
IGF-I has a physiological neuroprotective tonic effect on the 
brain that is depressed in sedentary subjects.  

Hunsberger et al. used a microarray technique to show 
that exercise upregulates a primary signaling cascade for 
neurotrophic factors and a peptide precursor, VGF [119]. 
The VGF protein showed a robust antidepressant response in 
behavioural animal models [119]. Furthermore, it was dem-
onstrated that VGF induces synaptic plasticity genes that are 
also altered after exercise (Nrn1 and Syn1) [162, 163]. It is 
remarkable that exercise regulates so many genes especially 
in the hippocampus and underscores that exercise can be a 
potent tool to influence brain metabolic functions. 
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1.7. The Relationship Between Depressive Disorders, Cy-
tokines and Exercise 

Recent research has shown that pro-inflammatory cytoki-
nes not only induce "sick symptoms", but also impinge on 
physically ill patients by leading to depressive disorders. In 
approximate 33% of patients who are treated by recombinant 
human cytokines interleukin-2 (IL-2) and interferon-� (IFN-
�) major depressive disorder is observed [164]. It has been 
shown in animal models of inflammation that existing states 
of decreased reactivity to reward (anhedonia) and reduced 
social exploration can be reversed by antidepressant treat-
ment [164].  

Sickness is basically an adaptive response to infection. 
As in the case of depressive disorders, it is characterized by 
endocrine, autonomic and behavioral changes. But unlike 
depression, sickness is completely reversible once the dis-
ease-causing agent has been eliminated. Van den Biggelaar 
et al. studied 267 people at the age of 85 without any psychi-
atric history. In this study it was shown that increased in-
flammatory biomarkers appear before the onset of depression 
[165]. Certain mediators like pro-inflammatory cytokines are 
produced in an infection that contain interleukin-1� and � 
(IL-1�, IL-1�), tumor necrosis factor-� (TNF-�) and inter-
leukin-6 (IL-6). These in the periphery produced cytokines 
also act on the brain causing behavioral symptoms postulated 
as "sickness behavior" [166, 167]. It has been repeatedly 
observed in patients suffering from major depression that the 
levels of pro-inflammatory cytokines, acute-phase proteins, 
chemokines and adhesion molecules are increased [168-175]. 
The most frequently observed alterations are increased levels 
of IL-6 in the plasma as in the serum and/or elevations of C-
reactive protein [166, 168-171]. Further alterations were 
observed in elevated concentrations of IL-�- and TNF-� in 
peripheral blood and in the CNS of patients suffering from 
MDD [172, 175, 176]. 

Major depressive disorders caused by immunotherapy in 
cancer or hepatitis C patients who were receiving immuno-
therapy supported the theory of cytokine-induced depression 
first postulated by Smith [177] and later by Maes [178]. Be-
havioral data in animal studies have indicated a relationship 
between cytokines and depression. Systemic administration 
of lipopolysaccharide (LPS) induced the expression of IL-1 
and other pro-inflammatory cytokine mRNAs and proteins in 
the brain in many studies [179-182] in addition showing that 
depressive-like behaviour remained after sickness behaviour 
had already retreated. Frenois et al. observed a decrease in 
the preference for a sucrose solution, a phenomenon that was 
still apparent when food intake and drinking had already 
normalized. If the animals received antidepressants before 
LPS-treatment the reduced intake of a sweetened solution 
was neutralized [183]. Another link in favour of relationship 
between cytokines and depression stems from the fact that 
immunotherapy reduces the plasma levels of tryptophan 
which determines the rate of serotonin synthesis in the brain 
[184]. This finding correlated in the same study with the 
patient's depression scores. A key role in the context of in-
flammation and depressive disorders seems to play IL-1-� 
that inhibits the expression of BDNF in the hippocampus of 
rats after undergoing social isolation [185]. Stress-induced 
neuronal cell loss in animals is also associated with increased 
levels of TNF-� and NF-�B (nuclear factor 'kappa-light-

chain-enhancer' of activated B-cells) [186]. Over-expression 
of TNF-� is observed in decelerated brain growth and neural 
damage, which is associated with reduced IGF-1 activity, in 
this case especially in the cerebellum [187]. Dantzer et al. 
(1999) showed that IGF-1 can counteract the behavioral de-
pressing effects of cytokines [188]. This finding is of great 
interest since IGF-1 can therefore act as an anti-
inflammatory cytokine in the brain and can also be induced 
by exercise.  

Exercise has been shown to influence the immune system 
and seems to play an important role in the relationship be-
tween the immune function and depressive disorders. During 
exercise, the cascade in cytokine response differs from the 
"classical" response to infections represented by the onset of 
circulating IL-6 during exercise [189]. Epidemiological data 
suggests a relationship between physical inactivity and low-
grade inflammation in healthy subjects [190-192]. Starkie et 
al. could (2003) show that exercise in the form of 3 hours 
ergometer cycling can suppress endotoxin-induced TNF-� 
production [193]. Exercise works as an anti-inflammatory 
agent by leading to higher levels of IL-6 which is followed 
by raising IL-1ra and IL-10 levels [194] and also by suppres-
sion of TNF-� production as demonstrated in animals and in 
vitro studies [195]. Exercise gives rise to high levels of epi-
nephrine that has also been shown after infusion to inhibit 
TNF-� production in response to endotoxin in vivo [196]. 
Except for strenuous exercise which is mainly pro-
inflammatory, the exact dose of exercise that has anti-
inflammatory effects has not been clearly established. How-
ever, the data suggests that moderate aerobic exercise seems 
to induce the most promising effects considering the anti-
inflammatory and antidepressive outcomes. 

To summarize the relationship between depressive disor-
der, cytokines and exercise, epidemiological data shows the 
correlation between physical inactivity and low-grade in-
flammation [190-192]. Since immunotherapy reduces plasma 
levels of tryptophan, it is noteworthy that levels of trypto-
phan can be directly influenced by exercise. As already men-
tioned acute physical exercise increases blood free trypto-
phan and in animals [71-73] and humans [74-76]. And also 
IGF-1, which counteracts the behavioral depressing effects 
of cytokines [188], can be influenced by physical activity 
[60, 156].  

2. CONCLUSION  

Exercise induces physiological changes that make it a po-
tentially powerful agent for use as a therapeutic method of 
intervention in many health disorders such as diabetes, 
stroke, certain cancers, coronary heart disease and or obesity. 
It seems that neurobiological health and functioning depends 
on the physical activity level of each person’s life. The ob-
served behavioural and biological influence of exercise train-
ing on depressive disorders suggests that it induces the same 
neurobiological alterations as antidepressant drug treatment 
by elevating the levels of serotonine [79, 80, 197], increasing 
central norepinephrine neurotransmission [81-83], altering 
the hypothalamic adrenocortical system [110-112] and rais-
ing �-endorphin concentrations [150, 151]. Furthermore, 
exercise stimulates the growth of new nerve cells [9] and the 
induction of the release of proteins and peptides that improve 
the health and survival of nerve cells like BDNF, VEGF, 
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IGF-1 and VGF [57, 59, 60, 119, 141]. Increased inflamma-
tory biomarkers seem to appear before the onset of depres-
sion, but the cytokine-response to exercise and its effect on 
depressive disorders needs to be further investigated. There 
is no accurate published information concerning dosage, 
duration, frequency, intensity or type of exercise to be used 
as an antidepressive treatment. Therefore, future research has 
to concentrate on the effects of specific forms of exercise. 
Therefore it would be interesting to answer following ques-
tions in the near future: Do the behavioural results correlate 
with the molecular changes in neurotrophic factors or mono-
amine, cytokine or cortisol alterations? Can there be ob-
served changes in the neuronal morphology, e.g. dendritic 
atrophy and spine reduction after the induction of “depres-
sion” and their possible modification after an exercise ther-
apy? What specific role are cytokines playing in depression 
and are they related to and contribute to positive outcomes 
when exercise is used as an intervention in depressive disor-
ders? How should the exercise be designed for it to be useful 
as an intervention in brain-related disorders like depression? 
Since MDD is a major health problem and the effectiveness 
of current antidepressants is limited, the antidepressant ac-
tions of exercise are of great interest and could represent 
more than just an alternative to current treatments. In all, 
these findings support the theory that brain health is activity 
dependent and that exercise training should be further pro-
moted as a preventive and rehabilitative strategy to avoid or 
treat brain-related disorders. 
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