

Self-selected Recovery in High-intensity Interval Training Promotes Positive Responses in Affect, Pleasure, and Mood in Young People

Leandro Sant'Ana ^{1,2,*}, Jeferson Macedo Vianna ¹, Bruno Travassos ^{3,4,5}, Fábio Yuzo Nakamura ⁶, Diogo Teixeira ^{7,8}, Fabiana Rodrigues Scartoni ⁹, Amandio Dias ^{10,11,12,13}, Raul Antunes ^{14,15}, Filipe Rodrigues ^{14,15}, Rui Matos ^{14,15}, Sérgio Machado ¹⁶ and Diogo Monteiro ^{14,15}

¹Postgraduate Program in Physical Education, Federal University of Juiz de Fora, Minas Gerais, Brazil

²Department of Biophysics and Physiology, Federal University of Juiz de Fora, Juiz de Fora, Brazil

³Department of Sports Science, University of Beira Interior, Covilhã, Portugal

⁴Research Center in Sport, Health and Human Development, Vila Real, Portugal

⁵Portugal Football School, Portuguese Football Federation, Cruz Quebrada, Portugal

⁶Research Center in Sports Sciences, Health Sciences, and Human Development, University of Maia, Maia, Portugal

⁷Faculty of Physical Education and Sport, Lusófona University, Lisbon, Portugal

⁸Research Center in Sport, Physical Education, and Exercise and Health (CIDEFES), Lisbon, Portugal

⁹Department of Physical Education, Catholic University of Petropolis, Rio de Janeiro, Brazil

¹⁰Egas Moniz School of Health and Science, Monte de Caparica, Portugal

¹¹Egas Moniz Center for Interdisciplinary Research (CiiEM); Egas Moniz School of Health & Science, Caparica, Almada, Portugal

¹²Integrative Movement and Networking Systems Laboratory (INMOV-NET LAB) - Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511, Caparica, Almada, Portugal

¹³Sport Physical Activity and Health Research & Innovation Center (SPRINT), Rio Maior, Portugal

¹⁴ESECS, Polytechnic University of Leiria, Leiria, Portugal

¹⁵Research Center in Sports, Health, and Human Development (CIDESD), Covilhã, Portugal

¹⁶Laboratory of Panic and Respiration, Institute of Psychiatry of Federal University of Rio de Janeiro (IPUB-UFRJ), Rio de Janeiro, Brazil

Abstract:

Introduction: High-Intensity Interval Training (HIIT) with self-selected recovery can promote positive emotional responses. This study aimed to verify the acute responses to HIIT with fixed recovery and to select high scorers on the state of affect, enjoyment, and mood in healthy young people.

Methods: Nineteen participants took part in the study (19.0 ± 1.0 years, 64.0 ± 9.2 kg, 169.1 ± 8.5 , and 22.0 ± 2.0 BMI). They performed 10×30 s (95% V_{peak}) with 1 min recovery (HIIT_{RecA} - active - 40% V_{peak}) and self-selected (HIIT_{RecB}). Affect, enjoyment, and mood were assessed before and after HIIT (both conditions).

Results: In both conditions, for time 1 and 2 were positive in positive ($p=.170$, EF: .102) and negative ($p=.0.90$, EF: .151) affect, pleasure ($p=.010$, EF: .315), and mood domains (tension: $p<.001$, EF: .673; depression: $p=.015$, EF: .286), anger: $p=.033$, EF: .230, and mental confusion: $p<.001$, EF: .451). In contrast, there was a reduction in the vigor domain and an increase in fatigue, with no differences in all emotional variables for condition and time*condition ($p>.05$).

Conclusion: Thus, selected self-recovery may be a strategy in prescribing HIIT with possibilities of not interfering with the emotional aspects, researched here.

Keywords: High-intensity interval training, Self-selected recovery, Affect, enjoyment, Mood.

© 2026 The Author(s). Published by Bentham Open.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: <https://creativecommons.org/licenses/by/4.0/legalcode>. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Received: January 27, 2025

Revised: July 28, 2025

Accepted: August 27, 2025

Published: February 18, 2026

Send Orders for Reprints to
reprints@benthamscience.net

*Address correspondence to this author at the Postgraduate Program in Physical Education, Federal University of Juiz de Fora, Minas Gerais, Brazil, and Department of Biophysics and Physiology, Federal University of Juiz de Fora, Juiz de Fora, Brazil; Tel: 55+ 24992087699; E-mail: leandrosantana.edufisica@hotmail.com

Cite as: Sant'Ana L, Viana J, Travassos B, Nakamura F, Teixeira D, Scartoni F, Dias A, Antunes R, Rodrigues F, Matos R, Machado S, Monteiro D. Self-selected Recovery in High-intensity Interval Training Promotes Positive Responses in Affect, Pleasure, and Mood in Young People. Clin Pract Epidemiol Mental Health, 2026; 22: e1745017937896260109054752
<http://dx.doi.org/10.2174/011745017937896260109054752>

1. INTRODUCTION

High-Intensity Interval Training (HIIT) is an excellent strategy for physiological improvement [1, 2], either in terms of health [3] or in terms of performance [4, 5]. In health, HIIT has been widely reported to promote improvement in several indicators: cardiometabolic [6], cardiovascular [7], cardiorespiratory [8], psychological [9], and neurological [10]. As far as performance is concerned, HIIT is effective for improving movement economy [11], neuromuscular [12], cellular [13], maximal oxygen consumption ($VO_{2\max}$) [14, 15], and factors that influence the improvement of $VO_{2\max}$ [16]. All these functionalities act in an integrated way in the organism, allowing more efficiency and better physiological adaptations [17].

However, HIIT is capable of developing physiological adaptations [18, 19] responsible for different central responses [1] and peripheral [2] in individuals of different ages [20]. Additionally, some studies [21] on intervention with HIIT have shown interesting responses on psychological aspects. In this way, we can highlight that interventions with HIIT can offer significant results in behavioral evaluations of affect [21], enjoyment [22], and mood [23]. These behavioral variables were the focus of this research. Regarding affect and pleasure, HIIT proved essential for these responses, which are predictors of adherence to physical exercise [24]. Although studies cite combining high-intensity stimuli with adequate recovery periods for affective and pleasure responses [21], the mechanisms behind these results are still inconsistent [25].

In the mood, it is known that the type of intensity promotes optimal results in this behavior, and studies have shown that HIIT can be an essential strategy in this promotion [23]. Mood state is linked to cognitive function, especially task accomplishment [26]. In summary, studies with HIIT in psychological assessments are still scarce [27] because it is important to have more information to explain the mechanisms that influence the psychological responses to high-intensity exercise intervention [28]. In this sense, previous studies [10] presented evidence that HIIT positively affects the part of the prefrontal cortex, the region of the brain responsible for executive function, by increasing activation and oxygenation and thus making it more efficient. However, there is a need to control the intensity because it can interfere with the functional limit, resulting in mental fatigue, affecting task performance, and, consequently, mood [29]. However, HIIT is efficient in mood

responses by providing stimuli in a controlled manner, even at a high intensity [10, 23]. In general, HIIT can be a positive intervention (in a planned way) in a training program aimed at improving health-related aspects [30, 31]. With regard to emotional state, we can suggest that high-intensity stimuli are effective in eliciting positive responses.

In prescription, another aspect that still needs more studies is related to the type of recovery between stimuli [30], as this is an important training variable, especially concerning HIIT [31]. Although some studies have already shown the importance of different types of recovery [32, 33], there is still a need to investigate the responses obtained by this important variable of HIIT prescription, especially considering psychological aspects [33, 34]. Thus, how one recovers between high-intensity stimuli is a question that needs further investigation because the type of recovery may be a determinant of psychological responses [33], thereby making the HIIT session more efficient [35] and attractive [36].

Active recovery [37] and passive recovery [38] are commonly used in interval training protocols and also serve as programmed break times, respecting physio-logical issues, mainly bioenergetic aspects [39]. However, one option that may also be a prescription strategy is the self-selected recovery [40]. In HIIT, because it is considered an activity that promotes optimal motivational level [41], the self-selected recovery can be a strategy to further increase the activity's pleasure [42]. In this way, it gets the individual to stay in the activity with efficient performance and thus tolerate high intensities [43]. However, even with these findings on self-selected recovery in interval training, there is still a large gap in this strategy. In addition, when it comes to HIIT, the demand for information on self-selected recovery is even greater, since this type of protocol requires efficient recovery/pauses between stimuli so that subsequent stimuli can be performed with optimum performance, minimizing physiological stress.

1.1. Present Study

Although some studies have investigated the influence of HIIT on affect, pleasure [21, 25], and mood [23], we have little information about the influence of the type of recovery in HIIT on these emotional states [44]. However, we know that HIIT can be a training option to promote positive psychological responses [45]. This way, active recovery with fixed time and selected high intensity can demonstrate distinct responses, even if positive in different magnitudes.

Furthermore, we believe that the type of retrieval that occurs between stimuli may interfere with perceptual responses [33].

Studies have shown that HIIT is a strategy for promoting affect responses [46], enjoyment [44], and mood [23]. Therefore, the present study aimed to investigate the acute HIIT intervention with fixed recovery (HIIT_{Rec-A} 1 min. - active) and self-selected (HIIT_{Rec-B}) on psychological behavior, using levels of affect, pleasure, and mood. Meaningful responses of HIIT with fixed recovery and self-selected recovery have already been identified [47, 48], but not on emotional aspects. Thus, analyses of the state of affect, pleasure, and mood are important because these variables can indicate important responses for the direction of training, emphasizing psychological analyses. In this sense, knowing more about these psychological variables is highly relevant to providing more tools for practical applicability, especially using HIIT. In addition, providing another recovery type option in HIIT (*e.g.*, self-selected recovery) may be one more reason to make the method even more attractive and thus increase the chances of adherence to the activity. Finally, another hypothesis of the present study was that in HIIT_{Rec-B}, the emotional levels (affect, pleasure, and mood) showed better [42].

2. METHODS

2.1. Participants

Sample size and power calculations were developed using G*Power (v.3.1.9.7) [49]. Considering the analysis to be performed on the primary outcomes, a between-within ANOVA-RM (2 [interventions] x 2 [time points]), anticipating a “large” effect size ($f = 0.4$), with an $\alpha = .05$, a statistical power of $(1 - \beta) = .95$, the correlated dependent variables with a $r = .50$, and a violation of sphericity (ϵ) = .80, will require a total sample size of 18 individuals. The suggested effect size and remaining parameters were defined according to similar studies evaluating changes in affect, enjoyment, and mood during exercise protocols [24, 25, 46, 50].

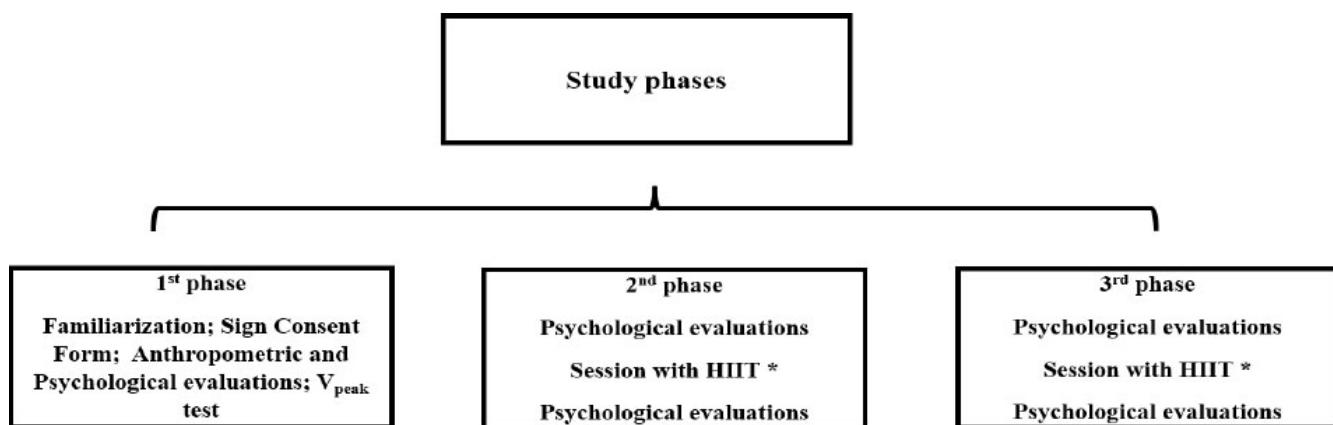
The sample was composed of 19 participants (Table 1), of whom 13 were men, and 6 were women (19 ± 1.0 years; 64.0 ± 9.2 kg; 169 ± 8.5 cm; 22.0 ± 2 BMI), all healthy and active. All the participants selected were university students and were invited to take part in the study after a formal individualized notification. Inclusion criteria were as follows: Active exercisers with at least ≥ 6 months experience and a minimum weekly frequency of 3 times a week. As exclusion criteria, we considered the following: use of any pharmacological medication and/or ergogenic resources that could influence the investigation (*e.g.*, those that could affect emotional state); and presentation of musculoskeletal disorders that could compromise the training protocol. All participants signed an informed consent form before the study intervention.

2.2. Design

For each visit, the present study was conducted for

three laboratory sessions for approximately 30 minutes (Fig. 1). The analyses were subdivided into each session, following the phases: the first phase: going to the laboratory for familiarization with the whole study, to sign the informed consent form, anthropometric evaluations (weight, height, and BMI), and performance of the maximal aerobic speed test (V_{peak}) for determining training intensities. Second and third phases: going to the lab for the first and second intervention sessions. The intervention sessions were randomized to determine which protocol the individual would perform at each visit: HIIT_{Rec-A} (fixed recovery) or HIIT_{Rec-B} (self-selected recovery). Before and after the HIIT sessions, the subjects completed questionnaires to evaluate affect, pleasure, and mood. The post-effort evaluation was started five minutes after the session's end to eliminate the effort's immediate influence on the responses, thus reducing the positive or negative bias on the emotional results. From the first to the second phase, the interval was 24 hours between sessions, and from the second to the third phase, the participants were 48 hours apart. All the data was collected by a single researcher to make it possible to have uniform evaluations among all the participants.

Table 1. Characteristics of the sample in general.


Anthropometric Variables	Sample	
	Mean	Sd
Age (years)	19.0	1.0
Weight (kg)	64.0	9.2
Height (cm)	169.1	8.5
BMI (kg/m^2)	22.0	2.0
Mechanical variables (km/h)		Sample
Mean		Sd
V_{peak} test (100%)	16.5	2.8
V_{peak} rec (40%)	6.6	1.4
V_{peak} W/C (50%)	8.2	1.4

Note: BMI: body mass index; V_{peak} speed test; V_{peak} rec: speed recovery; V_{peak} W/C: speed warm and cool down.

The participants' state of affect, enjoyment, and mood was investigated based on recent studies [21, 25, 47, 50]. The emotional evaluations were made through specific questionnaires for each behaviour based on studies related to the theme [23, 25, 51]. The evaluations were performed before and after the HIIT session for both conditions (HIIT_{Rec-A} and HIIT_{Rec-B}).

2.3. Affect Evaluation

The positive and negative affect schedule will be used to assess effectiveness levels and psychometric properties [52]. The questionnaire has 20 items to be answered on a scale of 1 to 5, but we considered 5 for positive affect (items 1, 10, 15, 17, and 19) and 5 for negative affect (items 2, 6, 7, 16, and 20), based on a study [53]. The sum of the positive and negative items was performed for the resolution. The higher the total value for positive affect and the lower the value for negative affect, the better the results related to this behavior.

Fig. (1). Experimental design.

2.4. Enjoyment Evaluation

For the evaluation of pleasure, the Physical Activity Pleasure and Feelings Scale (PACES) [54] was utilized. This questionnaire has 8 items related to the feeling of pleasure, answered on a scale of 1 to 7. All items are summed up, and the higher the total values, the better the pleasure index.

2.5. Mood Evaluation

For mood evaluation, the Brunel scale (Brums) will be used [55]. This questionnaire has 24 items subdivided into 6 domains on a scale of 0 to 4, being: tension (items 1, 13, 14 and 18), depression (items 5, 6, 12 and 16), anger (items 7, 11, 19 and 22), vigor (items 2, 15, 20 and 23), fatigue (items 4, 8, 10 and 21), and mental confusion (items 3, 9, 17 and 24). After summing up the responses for each item, the values for tension, depression, anger, fatigue, and confusion are expected to be decreased. Moreover, the domain values of vigor are maintained or increased.

2.6. Anthropometric Measures

The anthropometric evaluation was performed using the variables of weight (kg), height (m), and body mass index (BMI, kg/m²). For the identification of weight and height, a brand scale, TANITA® (MC 580m), and a brand stadiometer SECA® (AS 217) were used, respectively. Both were duly tested and calibrated. As for the BMI, it was obtained using the formula:

$$\text{BMI} = \frac{\text{weight}}{\text{height}^2}$$

2.7. Peak Velocity Test (V_{peak})

The test for peak speed identification (V_{peak}) was performed on a professional treadmill of the brand NORDIC TRACK® (T 22.0). An incremental test was performed according to the Conconi protocol [56, 57] and in studies demonstrating the validity of _{peak} for intensity targeting [58-60]. The protocol was composed of an Initial

Phase (warm-up): 5 min at a speed of 8.0 km/h and a sequence of static stretches with a resistance of 20 seconds for each exercise. Main phase (test): start at 8.0 km/h with a 1.0 km/h increment every one minute until voluntary exhaustion. Final phase (deceleration): 5 min at 5.0 km/h. The maximum speed reached was considered the one maintained for at least 50% of the determined time (1 min) for each increment.

2.8. Training Protocols

For the intervention, we will use a HIIT protocol performed on a treadmill, based on studies on the method [1, 61, 62]. The HIIT was conducted as follows: Initial Phase (warm-up): 10 min. (50% V_{peak}). Main phase (stimulus/recovery): 10 x 30 sec (95% V_{peak}) for 1 min active recovery (40% V_{peak}) (HIIT_{rec A}) or self-selected recovery (HIIT_{rec B}). The self-selected recovery will be the convenient time (self-rated) for each individual to return to the next stimulus, the final phase (cool down): 5 min. (50% V_{peak}).

2.9. Statistical Analysis

Means and standard deviations were calculated for all studied variables. Normality and homoscedasticity were verified with the Shapiro-Wilk ($n < 50$) and Levene's tests, respectively. Next, a within-between ANOVA 2x2 - (2 [interventions] x 2 [time points]) was conducted to examine differences between dependent variables. For all tests, the significance level to reject the null hypothesis was set at 5%. Sphericity assumptions were examined using Mauchly's test. When this assumption was not met, the Greenhouse-Geisser adjusted values and degrees of freedom were reported [63] and are indicated by the presence of decimal degrees of freedom. Bonferroni-adjusted post-hoc tests followed the repeated measures analyses to analyze pairwise comparisons. The η^2 effect size was calculated, and the assumed reference values were as follows: "small" effect = .01, "medium" effect = .06, and "large" effect = .14 [64]. Statistical analyses were conducted in IBM SPSS Statistics version 27.

3. RESULTS

All the selected participants (n=19) completed all the stages of the study. At no time did they report any myoarticular discomfort or any other type of pain or injury. In the HIIT_{Rec-B} condition, the average time of the self-selected recovery time was 46.70±16.58 seconds. Table 2 shows the descriptive statistics for the variables studied. In general, the results in both conditions for times 1 and 2 were positive in the affect, pleasure, and mood

domains of tension, depression, anger, and mental confusion. In contrast, there was a reduction in the vigor domain and increased fatigue.

In Table 3, it is possible to observe that there are no differences in all emotional variables for condition and time*condition. However, a significant difference was observed in pleasure ($p<.010$), tension ($p<.001$), depression ($p<.015$), anger ($p<.015$), and mental confusion ($p<.001$) over time, and the observed affection fluctuates from small to medium-sized.

Table 2. Descriptive statistics for affect, enjoyment, and mood.

Emotions Variables	M _{preC1}	M _{posC1}	SD _{preC1}	SD _{posC1}	M _{preC2}	M _{posC2}	SD _{preC2}	SD _{posC2}
Positive Affect	3.30	3.43	.66	.77	3.32	3.49	.64	.80
Negative Affect	1.13	1.06	.28	.13	1.30	1.20	.33	.43
Enjoyment	4.74	5.15	.62	.95	5.05	5.24	.87	1.13
Tension	2.26	2.07	.58	.838	2.95	2.44	.79	.75
Depression	1.10	.68	946	.32	1.32	.37	.95	.16
Anger	.68	.32	1.56	1.16	1.00	.11	1.56	.32
Vigor	7.26	6.68	2.42	2.89	7.37	6.95	2.63	3.10
Fatigue	3.21	3.74	2.29	3.63	4.32	4.84	2.92	3.74
Mental confusion	1.11	.32	1.99	.67	1.26	.32	1.14	.75

Note: M_{preC1}= mean pre-test condition 1; M_{posC1}= mean pos-test condition 1; SD_{preC1}= standard deviation pre-test condition 1; SD_{posC1}= standard deviation pos-test condition 1; M_{preC2}= mean pre-test condition 2; M_{posC2}= mean pos-test condition 2; SD_{preC2}= standard deviation pre-test condition 2; SD_{posC2}= standard deviation pos-test condition 2.

Table 3. Differences in all emotional variables for time, condition, and time*condition.

Emotions Variables	Mean Square	F	df1	df2	p	η^2_p	Pairwise Comparisons
Positive Affect							
Time	10.316	2.048	1	18	.170	.102	ns
Condition	.842	.050	1	18	.826	.003	ns
Time*Condition	.842	.057	1	18	.814	.003	ns
Negative Affect							
Time	11.066	3.203	1	18	.090	.151	ns
Condition	3.803	3.923	1	18	.063	.179	ns
Time*Condition	.474	.073	1	18	.790	.004	ns
Pleasure							
Time	108.961	8.265	1	18	.010	.315	1 ≠ 2
Condition	48.961	.580	1	18	.456	.031	ns
Time*Condition	57.316	1.358	1	18	.259	.070	ns
Tension							
Time	70.118	36.978	1	18	<.001	.673	1 ≠ 2
Condition	3.803	.873	1	18	.673	.046	ns
Time*Condition	4.263	.561	1	18	.463	.030	ns
Depression							
Time	8.224	7.212	1	18	.015	.286	1 ≠ 2
Condition	2.224	.860	1	18	.366	.046	ns
Time*Condition	6.368	1.670	1	18	.213	.085	ns
Anger							
Time	7.579	5.366	1	18	.033	.230	1 ≠ 2
Condition	.053	.029	1	18	.867	.002	ns
Time*Condition	5.263	.888	1	18	.359	.047	ns
Vigor							
Time	4.750	.966	1	18	.339	.003	ns

Emotions Variables	Mean Square	F	df1	df2	p	η^2_p	Pairwise Comparisons
Condition	.645	.059	1	18	.811	.001	ns
Time*Condition	.474	.082	1	18	.778	.005	ns
Fatigue							
Time	5.263	2.337	1	18	.419	.037	ns
Condition	23.211	.683	1	18	.144	.115	ns
Time*Condition	.001	.022	1	18	.998	.001	ns
Mental confusion							
Time	14.329	14.805	1	18	.001	.451	1 ≠ 2
Condition	.118	.049	1	18	.828	.003	ns
Time*Condition	.474	.103	1	18	.752	.006	ns

Note: F = test results; df1 = degrees of freedom of the six conditions; df2 = degrees of freedom of error; p = significance; η^2_p = partial eta-square; ns = no differences detected.

4. DISCUSSION

Although some studies already show positive results in affect [27], pleasure [21], and mood [44], information about the type of recovery of emotional aspects is still inconsistent [34], especially about affect, pleasure, and mood being assessed together and in front of exercise at high intensity. Regarding self-selected recovery, it becomes even scarcer [42]; therefore, the present study aimed to investigate the acute HIIT intervention with fixed recovery (HIITRec-A 1 min - active) and self-selected recovery (HIITRec-B) on psychological behavior, using levels of affect, enjoyment, and mood.

One of the initial hypotheses was that HIIT_{Rec-B} would promote better emotional responses (affect, enjoyment, and mood), as participants would have input into the methodological conduct of the session, and this, perhaps, would be a reason for better emotional responses. However, this theoretical assumption was not confirmed as there were no differences between the conditions. However, the other hypothesis would be that with the results, we could reinforce that the self-selected recovery could be one more strategy to manipulate this variable in sessions with HIIT. In this sense, self-selected recovery, as shown in other studies [34], is an excellent option for recovery following high-intensity stimuli.

4.1. Present Intervention and Responses of Affect, Pleasure, and Mood

Our findings showed, through descriptive statistics, positive responses for both conditions (in time: pre and post) on affect (positive and negative), enjoyment, and the mood domains: tension, depression, anger, and mental confusion. Additionally, in the mood domains, there was a decrease in vigor and an increase in fatigue, both negative responses. However, because the analysis focused on acute responses, participants were influenced by the effort performed within acceptable magnitudes. No significant differences were observed between time conditions for the emotional variables ($p > .05$). In contrast, significant differences were observed for pleasure and mood domains, including tension, depression, anger, and mental confusion, in both conditions when comparing pre- and post-intervention time points ($p < .001$).

These observed affectations fluctuated between small and medium. Studies have shown positive responses after intervention with HIIT [27]. Alarcón-Gómez *et al.* [51] found optimal results after a 6-week HIIT intervention, and one of these results was an increase in enjoyment. However, most studies also relate the assessment of enjoyment, and improvements in the state of these variables are reinforced with the HIIT intervention [21].

After HIIT intervention with different recovery strategies, our findings, in part, reinforce those found in these cited studies. In mood, our findings were in line with those of Marques *et al.* [45], who also observed positive results in tension, depression, anger, and mental confusion and negative results in vigor and fatigue. In the present study, a significant difference was observed considering the time (pre and post) for the domains of tension, depression, anger, and mental confusion ($p < .001$) and not for vigor and fatigue ($p > .05$). Marques *et al.* [45] found significance ($p < 0.05$) in the tension domains and for vigor, between groups.

It has already been emphasized that self-selected recovery [41] is important. In perceptual assessments (e.g., ratings of perceived exertion) with HIIT, studies also reinforce that self-selected recovery can be considered an option in the prescription for these assessments [36, 43], demonstrating that this type of recovery can be a tool for psychological influence. However, the present study aimed to investigate the influence of self-selected active recovery in HIIT on affect, enjoyment, and mood states compared to traditional active recovery with a fixed time (the 60s).

Santos *et al.* [42] used self-selected recovery (passive) retrieval between stimuli and observed no significant differences in affect but demonstrated that this type of retrieval strategy might be relevant in HIIT prescriptions. Although these studies demonstrate the potential in the selected high recovery, we have a considerable restriction of studies using this recovery strategy in HIIT assessing affect, enjoyment, and mood. In the present study, in the HIIT_{RecB} condition, the average time of the selected high recovery was 46.70 ± 16.58 seconds. Not much different from the time set (the 60s) in the HIIT_{RecA} condition, demonstrating that the participants could apply an adequate time for performing the recovery.

The self-selected recovery may be significant not only for physiological responses [43, 49] but also for psychological ones [36, 42]. However, more studies with evaluations on affect, pleasure, and mood are still needed. The fact that the individual participates in the methodological conduction of the session (*e.g.*, self-selected recovery) may be a strategy to promote affect and pleasure, which are also related to adherence to the activity [36, 65]. Additionally, it is agreed that strategies such as self-selected exercises play a crucial role in positive affective responses [66].

Our findings reinforce the idea that self-selected recovery can be an option within the HIIT configuration and elicit positive affective responses, consistent with the Dual-Mode Theory proposed by Ekkekakis [67]. This theory agrees on the importance of pleasure in prescribing and monitoring activity, assuming that hedonic factors are an essential part of the framework surrounding the psychological responses to activity [47]. HIIT can be an exercise option with broad adherence capacity [42] because it provides optimal responses in affection and enjoyment [47, 69], these being indicators of permanence in the activity [70].

HIIT is an efficient method for physiological and psychological responses [70], which makes this activity important and considered in the prescription of aerobic activities. Finally, the type of recovery between stimuli is a crucial variable in programming the HIIT session [30, 71, 72]. This way, we can suggest that self-selected recovery is another prescription option, supported by the studies [40, 42, 47, 73].

4.2. Possible Influencing Mechanisms

The mechanisms behind the affect, enjoyment, and mood responses arising from HIIT intervention (regardless of the type of recovery) are complex, and studies report inconsistency on this part [25]. Affective responses are related to conscious mental processing [74]. In neural terms, studies suggest that the frontal lobe plays a crucial role in affective modulation and that these emotional changes can be positive in aerobic activities [75]. In this sense, we can reinforce that HIIT, despite being composed of anaerobic stimuli [2, 76], is an activity that has aerobic predominance [1, 61, 77] and can be an excellent intervention strategy.

Furthermore, regarding the frontal lobe, asymmetric activation of this brain region appears to indicate effective responses [75, 78]. About enjoyment, it is a subjective hedonic variable linked to neuropsychological components that require biological brain resources [79]. From a neurochemical point of view, studies point to dopamine as the primary neurotransmitter related to the state of affection and enjoyment [80]. In mood, cortical connectivity seems to trigger positive responses in this behavioural state [81, 82]. Another issue is that mood is linked to cognitive function, mainly when accomplishing tasks [26].

In this sense, previous studies [10] presented evidence that HIIT positively affects the part of the prefrontal

cortex, the region of the brain responsible for executive function, by increasing activation and oxygenation and thus making it more efficient. However, there is a need to control the intensity because it can interfere with the functional limit, resulting in mental fatigue, affecting task performance and consequently the mood [29], generating a negative consequence in the state of affection and enjoyment [36]. However, the mechanisms linked to improving these emotional aspects of high-intensity exercise are still unclear [67, 81].

4.3. Limitations, Practical Applications, and Future Studies

The study has some limitations, one of which is the scarcity of explanations about the mechanisms behind the affect, pleasure, and mood responses to high-intensity exercise. Regarding HIIT intervention in psychological evaluations, the studies are limited to explaining the mechanisms, perhaps because of the same difficulty we had. However, there is a relevant essential to have more information to explain the mechanisms that influence the psychological responses resulting from high-intensity exercise intervention, especially the variables analyzed here [28]. Another limitation is that we cannot extrapolate our findings chronologically because we performed a critical analysis. Given that our sample ($n=19$) followed the requirements of the sample calculation ($n=18$), we cannot extrapolate the findings to the entire population of young people. However, we can suggest that our findings are important parameters to consider.

Studies that used HIIT to analyze these emotional states over extended periods obtained positive results [21, 47, 50], which reinforce the idea that this type of intervention is an option for improving psychological states. Additionally, we used a recovery strategy, a fixed time, and a selected high. In interval training, recovery between stimuli is performed either actively or passively, and both are important in the session [30]. In general, these strategies are carried out within a fixed time. However, studies already advocate the self-selected recovery model as another application form [42, 83]. Our findings add to this argument that recovery within the time chosen by the practitioner may play an essential role in HIIT sessions, especially in emotional responses [83].

In this way, we can point out that this variation of recovery used adds more attractiveness to HIIT and can make this activity more motivating and consequently be a reason for adherence to the practice [41]. We suggest other studies with this theme, with more variations of the type of recovery (for example, active *versus* passive), other protocols, and for a longer analysis time. Thus, it will be possible to further enrich HIIT using a self-selected recovery. Finally, the present study has proven to be very useful for practical applicability. We used a very accessible intervention methodology, and in the same way, we evaluated the responses of the interventions with easily applicable and highly valid instruments. Thus, the findings of this research managed to achieve a high level of utilization and contribution to the prescription of physical training.

CONCLUSION

The present study used HIIT interventions using two active recovery conditions between stimuli: one with a fixed time (the 60s) and the self-selected recovery time. To analyze emotional variables, such as affect, pleasure, and mood, we found that both conditions helped to achieve positive responses. With this, we can reinforce, along with other studies already done, that in addition to the traditional ways of recovering between stimuli in HIIT, the high selected recovery can also be a strategy, and with that, we can have one more methodological tool to apply in training with this method.

AUTHORS' CONTRIBUTIONS

The authors confirm their contributions to the paper as follows: L.S.: Collected the data; L.S., J.M.V., F.R.S., S.M. and D.M.: Contributed to writing, reviewing, and editing; B.T. and F.Y.N.: Were responsible for conceptualization; D.T.: Developed the methodology; F.R.: Conducted the investigation; A.D.: Performed data curation; R.A.: Carried out data analysis and interpretation; and R.M.: Prepared the original draft of the manuscript. All authors reviewed the results and approved the final version of the manuscript.

LIST OF ABBREVIATIONS

HIIT	=	High-Intensity Interval Training
VO _{2max}	=	Maximal Oxygen Consumption
V _{peak}	=	Peak Velocity

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This study was approved by the Ethics and Research Committee of the Catholic University of Petrópolis (CAEE: 59449822.2.0000.5281).

HUMAN AND ANIMAL RIGHTS

All procedures performed in studies involving human participants were in accordance with the ethical standards of institutional and/or research committee and with the 1975 Declaration of Helsinki, as revised in 2013.

CONSENT FOR PUBLICATION

Written and informed consent was obtained from each participant involved in the study.

AVAILABILITY OF DATA AND MATERIALS

All data generated or analyzed during this study are included in this published article.

FUNDING

None.

CONFLICT OF INTEREST

Dr. Sérgio Machado is a member of the Editorial Advisory Board of the journal CPEMH.

ACKNOWLEDGEMENTS

The authors acknowledge the Post Graduate Program in Physical Education at the Federal University of Juiz de Fora and the School of Education and Social Sciences at the Polytechnic University of Leiria, Leiria, Portugal.

REFERENCES

- Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: Part I: Cardiopulmonary emphasis. *Sports Med* 2013; 43(5): 313-38. <http://dx.doi.org/10.1007/s40279-013-0029-x> PMID: 23539308
- Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Part II: Anaerobic energy, neuromuscular load and practical applications. *Sports Med* 2013; 43(10): 927-54. <http://dx.doi.org/10.1007/s40279-013-0066-5> PMID: 23832851
- Atakan MM, Li Y, Koşar ŞN, Turnagöl HH, Yan X. Evidence-based effects of high-intensity interval training on exercise capacity and health: A review with historical perspective. *Int J Environ Res Public Health* 2021; 18(13): 7201. <http://dx.doi.org/10.3390/ijerph18137201> PMID: 34281138
- Cabral-Santos C, Gerosa-Neto J, Inoue DS, et al. Physiological acute response to high-intensity intermittent and moderate-intensity continuous 5 km running performance: Implications for training prescription. *J Hum Kinet* 2017; 56(1): 127-37. <http://dx.doi.org/10.1515/hukin-2017-0030> PMID: 28469751
- Engel FA, Ackermann A, Chtourou H, Sperlich B. High-intensity interval training performed by young athletes: A systematic review and meta-analysis. *Front Physiol* 2018; 9(JUL): 1012. <http://dx.doi.org/10.3389/fphys.2018.01012> PMID: 30100881
- Batacan RB, Duncan MJ, Dalbo VJ, Tucker PS, Fenning AS. Effects of high-intensity interval training on cardiometabolic health: A systematic review and meta-analysis of intervention studies. *Br J Sports Med* 2017; 51(6): 494-503. <http://dx.doi.org/10.1136/bjsports-2015-095841> PMID: 27797726
- Taylor JL, Holland DJ, Spathis JG, et al. Guidelines for the delivery and monitoring of high intensity interval training in clinical populations. *Prog Cardiovasc Dis* 2019; 62(2): 140-6. <http://dx.doi.org/10.1016/j.pcad.2019.01.004> PMID: 30685470
- Wen D, Uttesch T, Wu J, et al. Effects of different protocols of high intensity interval training for VO_{2max} improvements in adults: A meta-analysis of randomised controlled trials. *J Sci Med Sport* 2019; 22(8): 941-7. <http://dx.doi.org/10.1016/j.jsams.2019.01.013> PMID: 30733142
- Shepherd SO, Wilson OJ, Taylor AS, et al. Low-Volume High-intensity interval training in a gym setting improves cardiometabolic and psychological health. *PLoS One* 2015; 10(9): e0139056. <http://dx.doi.org/10.1371/journal.pone.0139056> PMID: 26402859
- Ai JY, Chen FT, Hsieh SS, et al. The effect of acute high-intensity interval training on executive function: A systematic review. *Int J Environ Res Public Health* 2021; 18(7): 3593. <http://dx.doi.org/10.3390/ijerph18073593> PMID: 33808399
- Ferley DD, Osborn RW, Vukovich MD. The effects of incline and level-grade high-intensity interval treadmill training on running economy and muscle power in well-trained distance runners. *J Strength Cond Res* 2014; 28(5): 1298-309. <http://dx.doi.org/10.1519/JSC.0000000000000274> PMID: 24172721
- Menz V, Marterer N, Amin SB, Faulhaber M, Hansen AB, Lawley JS. Functional Vs. running low-volume high-intensity interval training: Effects on VO_{2max} and muscular endurance. *J Sports Sci Med* 2019; 18(3): 497-504. <http://dx.doi.org/10.1519/JSC.0000000000000274> PMID: 31427872
- Tan R, Nederveen JP, Gillen JB, et al. Skeletal muscle fiber-type-specific changes in markers of capillary and mitochondrial content after low-volume interval training in overweight women. <http://dx.doi.org/10.1519/JSC.0000000000000274> PMID: 31427872

Physiol Rep 2018; 6(5): 13597.
<http://dx.doi.org/10.14814/phy2.13597> PMID: 29484852

[14] González-Mohino F, Santos-Concejero J, Yustres I, González-Ravé JM. The effects of interval and continuous training on the oxygen cost of running in recreational runners: A systematic review and meta-analysis. Sports Med 2020; 50(2): 283-94.
<http://dx.doi.org/10.1007/s40279-019-01201-x> PMID: 31606879

[15] Foster C, Farland CV, Guidotti F, *et al.* The effects of high intensity interval training vs steady state training on aerobic and anaerobic capacity. J Sports Sci Med 2015; 14(4): 747-55.
 PMID: 26664271

[16] Rosenblat MA, Granata C, Thomas SG. Effect of interval training on the factors influencing maximal oxygen consumption: A systematic review and meta-analysis. Sports Med 2022; 52(6): 1329-52.
<http://dx.doi.org/10.1007/s40279-021-01624-5> PMID: 35041180

[17] Benda NMM, Seeger JPH, Stevens GGCF, *et al.* Effects of high-intensity interval training *versus* continuous training on physical fitness, cardiovascular function, and quality of life in heart failure patients. PLoS One 2015; 10(10): 0141256.
<http://dx.doi.org/10.1371/journal.pone.0141256> PMID: 26517867

[18] Gibala MJ, Little JP, Van Essen M, *et al.* Short-term sprint interval *versus* traditional endurance training: Similar initial adaptations in human skeletal muscle and exercise performance. J Physiol 2006; 575(3): 901-11.
<http://dx.doi.org/10.1113/jphysiol.2006.112094> PMID: 16825308

[19] Gibala MJ, McGee SL. Metabolic adaptations to short-term high-intensity interval training: A little pain for a lot of gain? Exerc Sport Sci Rev 2008; 36(2): 58-63.
<http://dx.doi.org/10.1097/JES.0b013e318168ec1f> PMID: 18362686

[20] Yasar Z, Dewhurst S, Hayes LD. Peak power output is similarly recovered after three- and five-days' rest following sprint interval training in young and older adults. Sports 2019; 7(4): 94.
<http://dx.doi.org/10.3390/sports7040094> PMID: 31027172

[21] Bottoms L, Leighton D, Carpenter R, *et al.* Affective and enjoyment responses to 12 weeks of high intensity interval training and moderate continuous training in adults with Crohn's disease. PLoS One 2019; 14(9): 0222060.
<http://dx.doi.org/10.1371/journal.pone.0222060> PMID: 31539378

[22] Martinez N, Kilpatrick MW, Salomon K, Jung ME, Little JP. Affective and enjoyment responses to high-intensity interval training in overweight-to-obese and insufficiently active adults. J Sport Exerc Psychol 2015; 37(2): 138-49.
<http://dx.doi.org/10.1123/jsep.2014-0212> PMID: 25996105

[23] Costello SE, O'Neill BV, Howatson G, van Someren K, Haskell-Ramsay CF. Detrimental effects on executive function and mood following consecutive days of repeated high-intensity sprint interval exercise in trained male sports players. J Sports Sci 2022; 40(7): 783-96.
<http://dx.doi.org/10.1080/02640414.2021.2015946> PMID: 34955079

[24] Oliveira BRR, Santos TM, Kilpatrick M, Pires FO, Deslandes AC. Affective and enjoyment responses in high intensity interval training and continuous training: A systematic review and meta-analysis. PLoS One 2018; 13(6): 0197124.
<http://dx.doi.org/10.1371/journal.pone.0197124> PMID: 29874256

[25] Hu M, Jung ME, Nie J, Kong Z. Affective and enjoyment responses to sprint interval training in healthy individuals: A systematic review and meta-analysis. Front Psychol 2022; 13(March): 820228.
<http://dx.doi.org/10.3389/fpsyg.2022.820228> PMID: 35356357

[26] Barnes CM, Van Dyne L. 'I'm tired': Differential effects of physical and emotional fatigue on workload management strategies. Hum Relat 2009; 62(1): 59-92.
<http://dx.doi.org/10.1177/0018726708099518>

[27] Follador L, Alves RC, Ferreira SS, *et al.* Physiological, perceptual, and affective responses to six high-intensity interval training protocols. Percept Mot Skills 2018; 125(2): 329-50.
<http://dx.doi.org/10.1177/0031512518754584> PMID: 29368530

[28] Parfitt G, Olds T, Eston R. A hard/heavy intensity is too much: The physiological, affective, and motivational effects (immediately and 6 months post-training) of unsupervised perceptually regulated training. J Exerc Sci Fit 2015; 13(2): 123-30.
<http://dx.doi.org/10.1016/j.jesf.2015.10.002> PMID: 29541110

[29] Habay J, Van Cutsem J, Verschueren J, *et al.* Mental fatigue and sport-specific psychomotor performance: A systematic review. Sports Med 2021; 51(7): 1527-48.
<http://dx.doi.org/10.1007/s40279-021-01429-6> PMID: 33710524

[30] Gibala MJ. High-intensity interval training: A time-efficient strategy for health promotion? Curr Sports Med Rep 2007; 6(4): 211-3.
<http://dx.doi.org/10.1097/01.CSMR.0000306472.95337.e9> PMID: 17617995

[31] Gillen JB, Gibala MJ. Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Appl Physiol Nutr Metab 2014; 39(3): 409-12.
<http://dx.doi.org/10.1139/apnm-2013-0187> PMID: 24552392

[32] Madueno MC, Guy JH, Dalbo VJ, Scanlan AT. A systematic review examining the physiological, perceptual, and performance effects of active and passive recovery modes applied between repeated-sprints. J Sports Med Phys Fitness 2019; 59(9): 1492-502.
<http://dx.doi.org/10.23736/S0022-4707.18.09188-0> PMID: 30421874

[33] Germano MD, Sindorf MAG, Crisp AH, *et al.* Effect of different recoveries during HIIT sessions on metabolic and cardiorespiratory responses and sprint performance in healthy men. J Strength Cond Res 2022; 36(1): 121-9.
<http://dx.doi.org/10.1519/JSC.0000000000003423> PMID: 31895286

[34] Wiewelhove T, Schneider C, Schmidt A, *et al.* Active recovery after high-intensity interval-training does not attenuate training adaptation. Front Physiol 2018; 9(APR): 415.
<http://dx.doi.org/10.3389/fphys.2018.00415> PMID: 29720949

[35] Fennell CRJ, Hopker JG. The acute physiological and perceptual effects of recovery interval intensity during cycling-based high-intensity interval training. Eur J Appl Physiol 2021; 121(2): 425-34.
<http://dx.doi.org/10.1007/s00421-020-04535-x> PMID: 33098020

[36] McEwan G, Arthur R, Phillips SM, Gibson NV, Easton C. Interval running with self-selected recovery: Physiology, performance, and perception. Eur J Sport Sci 2018; 18(8): 1058-67.
<http://dx.doi.org/10.1080/17461391.2018.1472811> PMID: 29842843

[37] Jekauc D. Enjoyment during exercise mediates the effects of an intervention on exercise adherence. Psychology 2015; 6(1): 48-54.
<http://dx.doi.org/10.4236/psych.2015.61005>

[38] Sant'Ana LO, Machado S, Ribeiro AAS, *et al.* Effects of cardiovascular interval training in healthy elderly subjects: A systematic review. Front Physiol 2020; 11(July): 739.
<http://dx.doi.org/10.3389/fphys.2020.00739> PMID: 32848808

[39] Wahl P, Mathes S, Achtzehn S, Bloch W, Mester J. Active vs. passive recovery during high-intensity training influences hormonal response. Int J Sports Med 2014; 35(7): 583-9.
<http://dx.doi.org/10.1055/s-0033-1358474> PMID: 24258473

[40] Mallol M, Norton L, Bentley DJ, Mejuto G, Norton K, Yanci J. Physiological response differences between run and cycle high intensity interval training program in recreational middle age female runners. J Sports Sci Med 2020; 19(3): 508-16.
 PMID: 32874103

[41] Glaister M, Witmer C, Clarke DW, Guers JJ, Heller JL, Moir GL. Familiarization, reliability, and evaluation of a multiple sprint running test using self-selected recovery periods. J Strength Cond Res 2010; 24(12): 3296-301.
<http://dx.doi.org/10.1519/JSC.0b013e3181bac33c> PMID: 19966582

[42] Santos A, Lonsdale C, Lubans D, *et al.* Rates of compliance and adherence to high-intensity interval training in insufficiently active adults: A systematic review and meta-analysis protocol. Syst Rev 2020; 9(1): 56.
<http://dx.doi.org/10.1186/s13643-020-01301-0> PMID: 32183892

[43] Gibson N, Brownstein C, Ball D, Twist C. Physiological, perceptual and performance responses associated with self-selected versus standardized recovery periods during a repeated sprint protocol in elite youth football players: A preliminary study. *Pediatr Exerc Sci* 2017; 29(2): 186-93.
<http://dx.doi.org/10.1123/pes.2016-0130> PMID: 28050914

[44] Faria J, Andrade A, Evmenenko A, Monteiro D, Rodrigues F, Marques P. Preference for and tolerance of exercise intensity: The Mediating Role of Vitality in Exercise Habit Preference for and tolerance of exercise intensity. *Int J Sport Psychol* 2021; 52: 468-81.

[45] Marques M, Alves E, Henrique N, Franchini E. Positive affective and enjoyment responses to four high-intensity interval exercise protocols. *Percept Mot Skills* 2020; 127(4): 742-65.
<http://dx.doi.org/10.1177/0031512520918748> PMID: 32323607

[46] Alves AR, Dias R, Neiva HP, et al. High-intensity interval training upon cognitive and psychological outcomes in youth: A systematic review. *Int J Environ Res Public Health* 2021; 18(10): 5344.
<http://dx.doi.org/10.3390/ijerph18105344> PMID: 34067861

[47] Jung ME, Bourne JE, Little JP. Where does HIT fit? An examination of the affective response to high-intensity intervals in comparison to continuous moderate- and continuous vigorous-intensity exercise in the exercise intensity-affect continuum. *PLoS One* 2014; 9(12): 114541.
<http://dx.doi.org/10.1371/journal.pone.0114541> PMID: 25486273

[48] Santos LER, Costa AS, Costa EC, Damasceno VO, Chen Z, de Oliveira IA. Effects of self-selected passive recovery time in interval exercise on perceptual and heart rate responses in older women: A promissory approach. *J Aging Phys Act* 2021; 30(3): 434-44.
<http://dx.doi.org/10.1123/japa.2021-0086> PMID: 34510027

[49] Brownstein CG, Ball D, Micklewright D, Gibson NV. The effect of maturation on performance during repeated sprints with self-selected versus standardized recovery intervals in youth footballers. *Pediatr Exerc Sci* 2018; 30(4): 500-5.
<http://dx.doi.org/10.1123/pes.2017-0240> PMID: 30033816

[50] Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. *Behav Res Methods* 2007; 39(2): 175-91.
<http://dx.doi.org/10.3758/BF03193146> PMID: 17695343

[51] Alarcón-Gómez J, Chulvi-Medrano I, Martín-Rivera F, Calatayud J. Effect of high-intensity interval training on quality of life, sleep quality, exercise motivation and enjoyment in sedentary people with type 1 diabetes mellitus. *Int J Environ Res Public Health* 2021; 18(23): 12612.
<http://dx.doi.org/10.3390/ijerph182312612> PMID: 34886337

[52] Andrade AJ, Ekkekakis P, Evmenenko A, Monteiro D, Rodrigues F, Cid L. Affective responses to resistance exercise: Toward a consensus on the timing of assessments. *Psychol Sport Exerc* 2022; 62: 102223.
<http://dx.doi.org/10.1016/j.psychsport.2022.102223>

[53] Costa Galinha I, Pereira CÂR, Esteves F. Short version of the Portuguese positive and negative affect scale - PANAS-VRP: Confirmatory factor analysis and temporal invariance. *PSICOLOGIA* 2014; 28(1): 53-65.
<http://dx.doi.org/10.17575/rpsicol.v28i1.622>

[54] Antunes R, Couto N, Vitorino A, Monteiro D, Marinho DA, Cid L. Physical activity and affect of the elderly: Contribution to the validation of the Positive and Negative Affect Schedule (PANAS) in the Portuguese population. *J Hum Sport Exerc* <comment xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML">in press</comment>
<http://dx.doi.org/10.14198/jhse.2020.152.08>

[55] Rodrigues F, Forte P, Teixeira DS, Cid L, Monteiro D. The physical activity enjoyment Sscale (Paces) as a two-dimensional scale: Exploratory and invariance analysis. *Monten J Sports Sci Med* 2021; 10(1): 61-6.
<http://dx.doi.org/10.26773/mjssm.210309>

[56] Rohlf IC, Pinto, Rotta TM, Luft CB, Andrade A, Krebs RJ, De Carvalho T. Brunel mood scale (BRUMS): An instrument for early detection of overtraining syndrome. *Rev Bras Med Esporte* 2008; 14(3): 176-81.
<http://dx.doi.org/10.1590/S1517-86922008000300003>

[57] Conconi F, Ferrari M, Ziglio PG, Droghe P, Codeca L. Determination of the anaerobic threshold by a noninvasive field test in runners. *J Appl Physiol* 1982; 52(4): 869-73.
<http://dx.doi.org/10.1152/jappl.1982.52.4.869> PMID: 7085420

[58] Conconi F, Grazzi G, Casoni I, et al. The Conconi test: Methodology after 12 years of application. *Int J Sports Med* 1996; 17(7): 509-19.
<http://dx.doi.org/10.1055/s-2007-972887> PMID: 8912066

[59] da Silva DF, Simões HG, Machado FA. vVO₂max versus Vpeak, what is the best predictor of running performances in middle-aged recreationally-trained runners? *Sci Sports* 2015; 30(4): e85-92.
<http://dx.doi.org/10.1016/j.scispo.2014.10.006>

[60] Machado FA, Kravchyn ACP, Pesarico CS, da Silva DF, Mezzaroba PV. Incremental test design, peak 'aerobic' running speed and endurance performance in runners. *J Sci Med Sport* 2013; 16(6): 577-82.
<http://dx.doi.org/10.1016/j.jsams.2012.12.009> PMID: 23379988

[61] Noakes TD, Myburgh KH, Schall R. Peak treadmill running velocity during the V_O₂ max test predicts running performance. *J Sports Sci* 1990; 8(1): 35-45.
<http://dx.doi.org/10.1080/02640419008732129> PMID: 2359150

[62] Billat LV. Interval training for performance: A scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I: Aerobic interval training. *Sports Med* 2001; 31(1): 13-31.
<http://dx.doi.org/10.2165/00007256-200131010-00002> PMID: 11219499

[63] Thibault G. A graphical model for interval training. *New Stud Athlet* 2003; 18(3): 49-55.

[64] Ho R. *Handbook of univariate and multivariate data analysis with IBM SPSS*. (2nd ed.), New York, NY 2014.

[65] Cohen J. *Statistical power analysis for the behavioral sciences*. New York: NY Routledge Acad. 1988.

[66] Williams DM. Exercise, affect, and adherence: An integrated model and a case for self-paced exercise. *J Sport Exerc Psychol* 2008; 30(5): 471-96.
<http://dx.doi.org/10.1123/jsep.30.5.471> PMID: 18971508

[67] Ekkekakis P. Let them roam free? physiological and psychological evidence for the potential of self-selected exercise intensity in public health. *Sports Med* 2009; 39(10): 857-88.
<http://dx.doi.org/10.2165/11315210-000000000-00000> PMID: 19757863

[68] Ekkekakis P. Pleasure and displeasure from the body: Perspectives from exercise. *Cogn Emotion* 2003; 17(2): 213-39.
<http://dx.doi.org/10.1080/0269930302292> PMID: 29715726

[69] Farias-Junior LF, Macêdo GAD, Browne RAV, et al. Physiological and psychological responses during low-volume high-intensity interval training sessions with different work-recovery durations. *J Sports Sci Med* 2019; 18(1): 181-90.
<http://dx.doi.org/10.17575/rpsicol.v18i1.30787666> PMID: 30787666

[70] Teixeira DS, Rodrigues F, Cid L, Monteiro D. Enjoyment as a predictor of exercise habit, intention to continue exercising, and exercise frequency: The intensity traits discrepancy moderation role. *Front Psychol* 2022; 13(February): 780059.
<http://dx.doi.org/10.3389/fpsyg.2022.780059> PMID: 35250719

[71] Kilpatrick MW, Jung ME, Little JP. High-intensity interval training. A review of physiological and psychological responses. *ACSM's Health Fit J* 2014; 18(5): 11-6.
<http://dx.doi.org/10.1249/FIT.0000000000000067>

[72] Schoenmakers PPJM, Reed KE. The effects of recovery duration on physiological and perceptual responses of trained runners during four self-paced HIIT sessions. *J Sci Med Sport* 2019; 22(4): 462-6.
<http://dx.doi.org/10.1016/j.jsams.2018.09.230> PMID: 30297216

[73] Schoenmakers PPJM, Hettinga FJ, Reed KE. The moderating role

of recovery durations in high-intensity interval-training protocols. *Int J Sports Physiol Perform* 2019; 14(6): 859-67. <http://dx.doi.org/10.1123/ijssp.2018-0876> PMID: 31146621

[74] Phillips SM, Thompson R, Oliver JL. Overestimation of required recovery time during repeated sprint exercise with self-regulated recovery. *J Strength Cond Res* 2014; 28(12): 3385-92. <http://dx.doi.org/10.1519/JSC.0000000000000529> PMID: 25028995

[75] Ekkekakis P, Russell JA. The Measurement of affect, mood, and emotion. Cambridge University Press 2013. <http://dx.doi.org/10.1017/CBO9780511820724>

[76] Ramalho Oliveira B, Viana B, Pires F, Júnior Oliveira M, Santos T. Prediction of affective responses in aerobic exercise sessions. *CNS Neurol Disord Drug Targets* 2015; 14(9): 1214-8. <http://dx.doi.org/10.2174/1871527315666151111121924> PMID: 26556086

[77] Billat LV. Interval training for performance: A scientific and empirical practice. Special recommendations for middle- and long-distance running. Part II: Anaerobic interval training. *Sports Med* 2001; 31(2): 75-90. <http://dx.doi.org/10.2165/00007256-200131020-00001> PMID: 11227980

[78] Laursen PB, Jenkins DG. The scientific basis for high-intensity interval training: Optimising training programmes and maximising performance in highly trained endurance athletes. *Sports Med* 2002; 32(1): 53-73. <http://dx.doi.org/10.2165/00007256-200232010-00003> PMID: 11772161

[79] Ekkekakis P, Petruzzello SJ. Analysis of the affect measurement conundrum in exercise psychology: IV. A conceptual case for the affect circumplex. *Psychol Sport Exerc* 2002; 3(1): 35-63. [http://dx.doi.org/10.1016/S1469-0292\(01\)00028-0](http://dx.doi.org/10.1016/S1469-0292(01)00028-0)

[80] Moccia L, Mazza M, Nicola MD, Janiri L. The experience of pleasure: A perspective between neuroscience and psychoanalysis. *Front Hum Neurosci* 2018; 12(September): 359. <http://dx.doi.org/10.3389/fnhum.2018.00359> PMID: 30233347

[81] Berridge KC, Kringelbach ML. Neuroscience of affect: Brain mechanisms of pleasure and displeasure. *Curr Opin Neurobiol* 2013; 23(3): 294-303. <http://dx.doi.org/10.1016/j.conb.2013.01.017> PMID: 23375169

[82] Ligeza TS, Nowak I, Maciejczyk M, Szygula Z, Wyczesany M. Acute aerobic exercise enhances cortical connectivity between structures involved in shaping mood and improves self-reported mood: An EEG effective-connectivity study in young male adults. *Int J Psychophysiol* 2021; 162: 22-33. <http://dx.doi.org/10.1016/j.ijpsycho.2021.01.016> PMID: 33508334

DISCLAIMER: The above article has been published, as is, ahead-of-print, to provide early visibility but is not the final version. Major publication processes like copyediting, proofing, typesetting and further review are still to be done and may lead to changes in the final published version, if it is eventually published. All legal disclaimers that apply to the final published article also apply to this ahead-of-print version.